Sparsity Constrained Graph Regularized NMF for Spectral Unmixing of Hyperspectral Data

نویسندگان

  • Roozbeh Rajabi
  • Hassan Ghassemian
چکیده

Hyperspectral images contain mixed pixels due to low spatial resolution of hyperspectral sensors. Mixed pixels are pixels containing more than one distinct material called endmembers. The presence percentages of endmembers in mixed pixels are called abundance fractions. Spectral unmixing problem refers to decomposing these pixels into a set of endmembers and abundance fractions. Due to nonnegativity constraint on abundance fractions, nonnegative matrix factorization methods (NMF) have been widely used for solving spectral unmixing problem. In this paper we have used graph regularized NMF (GNMF) method combined with sparseness constraint to decompose mixed pixels in hyperspectral imagery. This method preserves the geometrical structure of data while representing it in low dimensional space. Adaptive regularization parameter based on temperature schedule in simulated annealing method also has been used in this paper for the sparseness term. Proposed algorithm is applied on synthetic and real datasets. Synthetic data is generated based on endmembers from USGS spectral library. AVIRIS Cuprite dataset is used as real dataset for evaluation of proposed method. Results are quantified based on spectral angle distance (SAD) and abundance angle distance (AAD) measures. Results in comparison with other methods show that the proposed method can unmix data more effectively. Specifically for the Cuprite dataset, performance of the proposed method is approximately 10% better than the VCA and Sparse NMF in terms of root mean square of SAD.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Distributed Unmixing of Hyperspectral Data With Sparsity Constraint

Spectral unmixing (SU) is a data processing problem in hyperspectral remote sensing. The significant challenge in the SU problem is how to identify endmembers and their weights, accurately. For estimation of signature and fractional abundance matrices in a blind problem, nonnegative matrix factorization (NMF) and its developments are used widely in the SU problem. One of the constraints which w...

متن کامل

جداسازی طیفی و مکانی تصاویر ابرطیفی با استفاده از Semi-NMF و تبدیل PCA

Unmixing of remote-sensing data using nonnegative matrix factorization has been considered recently. To improve performance, additional constraints are added to the cost function. The main challenge is to introduce constraints that lead to better results for unmixing. Correlation between bands of Hyperspectral images is the problem that is paid less attention to it in the unmixing algorithms. I...

متن کامل

Hyperspectral Unmixing via $L_{1/2}$ Sparsity-Constrained Nonnegative Matrix Factorization

Hyperspectral unmixing is a crucial preprocessing step for material classification and recognition. In the last decade, nonnegative matrix factorization (NMF) and its extensions have been intensively studied to unmix hyperspectral imagery and recover the material end-members. As an important constraint for NMF, sparsity has been modeled making use of the L1 regularizer. Unfortunately, the L1 re...

متن کامل

HALS-based NMF with flexible constraints for hyperspectral unmixing

In this article, the hyperspectral unmixing problem is solved with the nonnegative matrix factorization (NMF) algorithm. The regularized criterion is minimized with a hierarchical alternating least squares (HALS) scheme. Under the HALS framework, four constraints are introduced to improve the unmixing accuracy, including the sum-to-unity constraint, the constraints for minimum spectral dispersi...

متن کامل

Structured Sparse Method for Hyperspectral Unmixing

Hyperspectral Unmixing (HU) has received increasing attention in the past decades due to its ability of unveiling information latent in hyperspectral data. Unfortunately, most existing methods fail to take advantage of the spatial information in data. To overcome this limitation, we propose a Structured Sparse regularized Nonnegative Matrix Factorization (SS-NMF) method from the following two a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1411.0392  شماره 

صفحات  -

تاریخ انتشار 2014